SYNTHESIS OF a-METHYLENE MONOSUBSTITUTED 6-LACTONES FROM a-PHOSPHONOLACTONES NEW WITTIG-HORNER COMPOUNDS

Gioacchino Falsone *, and Ute Wingen

Institut für Organische Chemie I der Universität, Universitätsstrasse 1, D-4000 Düsseldorf Detlef Wendisch

Zentralbereich Forschung und Entwicklung der Bayer AG, D-5090 Leverkusen Bayerwerk

Abstract- The synthesis of the α -methylene monosubstituted δ -lactones $\underline{6}$ - $\underline{10}$ and $\underline{14}$ - $\underline{18}$ from the 4-phosphonolactones 2a,2b and the aldehydes 3-5 and 11-13 is described.

The reaction of a-halolactones with trialkylphosphites (Arbuzov reaction) represents a facile and elegant procedure for the synthesis of Wittig-Horner reagents. The general use of this reaction is limited by the small number of the $_{lpha}$ -halolactones obtainable 4,5 . By hydrogenation of the α -phosphonolactones α,β - unsaturated 1a,1b, obtained in our laboratory o, we have opened a new route to a class of compounds of synthetic interest.

The hydrogenation of the compounds 1a and 1b in the presence of platinium (IV) oxide in isobutyl alcohol (r.t) led to the unknown α -diethylphosphonolactones 2a (R = CH R = R C_3H_2) and 2b ($R^1 = R^2 = CH_2$) in 100% yields.

Scheme 1

The EI mass spectra of the α -phosphonolactones show the presence of molecular ions at m/z =292 of 2a and m/z =264 of 2b supporting the complete hydrogenation of the starting compounds 1a,1b. Olefination of the 2a with the aldehydes 3-5 and of 2b with the aldehydes 11-13 under Wittig-Horner conditions gives the α -methylene monosubstituted δ -lactones 6-10 $(R^1 = CH_3, C_2H_3)$ and 14-18 $(R^1 = R^2 = CH_3)$ in 50-70% yields; (E/2=3/2) (Scheme 2).

We have observed that the reaction of $\underline{2b}$ with 4-nitrobenzaldehyde $\underline{11}$ and of $\underline{2a}$ with the 5-methyl-thiophene-carbaldehyde 4 afforded only pure E-isomeres 8 and 14. In the other reactions $\underline{\underline{E}}/\underline{Z}$ -isomers have been always obtained and separated by flash chromatography.

In the $^{\mathrm{I}}$ H-NMR spectra exocyclic protons are at a lower field - at δ = 7,98 - 8.13 ppm for aromatic derivates; $\delta = 6.70 - 7.10$ ppm for aliphatic derivates - (s.Table 1) in the Eisomers by respect to Z-isomers - at $\delta = 6.23$ ppm for 6 and $\delta = 5.73$ - 6.03 ppm for aliphattic derivates -. This difference in the chemical shifts of the olefinic protons in the E-

^{*} New address: Istituto di Chimica Farmaceutica e Tossicologica Universita' di Trieste - Piazzale Europa, I - 34127 Trieste.

isomers might be attributable, besides, to a mesomeric effect. This effect is also 7,8 observed in the 13 C-NMR spectra of the carbonyl groups of lactones (s. Table 1).

By comparison of the EI mass spectra of the aromatic E-compounds 7.8,14 a prevailing cleavage between the C-2,C-3 and C-4,C-5 of the lactone ring under formation of the conspicuos fragments ions (m/z = 165,70%; 166,70.5%; for 7; m/z = 136,100% for 8; m/z = 161,94% for 4) was observed. In the aliphatic derivates 15-18 prevail the fragment at m/z = 167,90% of the Z-isomers; m/z=167,40-50% of the E-isomers. The presence of the secondary methyl group in the side chain of the isomeric compounds 9 and 10 affords in the MS spectra the fragments at m/z=124 + H, 77,6% of Z-isomers 9 and at m/z=156, 75.5% of E-isomers 10.

Scheme 2. (Procedure: 20 mmol NaH in 70 ml THF, 20 mmol $\underline{2a,2b}$ under $\frac{2}{2}$ -atmosphere was added and 1h reflux; 20 mmol $\underline{3-5}$ and $\underline{11-13}$ in 10 ml THF was added and 2h reflux).

Table 1. Chemical Shifts 1 H (ppm) of the Olefinic Protons and 13 C (ppm) of the Carbonyl Groups Lactones $\underline{6-10}$ and $\underline{14-18}$.

\underline{Z} -isomers			\underline{E} -isomers			<u>Z</u> -isomers			E-isomers		
Comp	d. H	С	Compo	і. н	С	Compo	і. н	С	Compd	. н	c
6	6,23	164.30	7	8.13	166.35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			14	7.98	165.13
_			8	8.30	166.88	15	6.00	164.9	16	7.03	165.80
9	5.73	165.13	10	6.70	166.18	17	6.03	164.29	18	7.10	165,90

REFERENCES

- 1 K.H.Büchel, H.Rochling and F.Korte, Liebigs Ann. Chem. 685, 10 (1965).
- 2 G.Falsone, B.Spur and W.Peters, Z.Naturforsch. 38b, 493 (1983).
- 3 U.Wingen, Diplom-Arbeit Universität Düsseldorf (1981).
- 4 J.Lehmann, Arch. Pharm. (Weinheim) 315, 241 (1982).
- 5 R.Achini, U.Mayer and C. Tamm, Helv.Chim.Acta 51, 1703 (1968).
- 6 G.Falsone and B.Spur, Liebigs Ann.Chem. (1981), 565.
- 7 H.Günther, NMR-Spektroskopie, Georg Thieme Verlag Stuttgart , S. 78 (1973).
- 8 G.Falsone, B.Spur, M.Erdmann and W.Peters, Arch.Pharm. (Weinheim) 316, 350 (1983).

(Received in Germany 25 June 1988)